23rd cardiovascular summit

April 28 - May 1, 2018 Coex, Seoul, Korea

Evolution of Multi-Modal Intracoronary Plaque Imaging

Evelyn Regar Heart Center University Hospital Zürich Zürich, Switzerland

No conflict of interest.

Multi-Modality Intracoronary Plaque Imaging

Sound and light follow the same physical rules of wave propagation

Boundary conditions are quite different:

Multi-Modality Intracoronary Plaque Imaging

Sound and light follow the same physical rules of wave propagation

Sound

Boundary conditions are quite different:

Higher resolution &

More spectroscopic possibilities make light better for:

- superficial morphological imaging

- NIRS, Raman, etc.

Higher penetration &

Access to RF signals

make sound better suited for:

- whole plaque imaging
- palpography, elastography, etc

Multi-Modality Intracoronary Plaque Imaging Clinically Used Approach: Combined NIRS-IVUS

Multi-Modality Intracoronary Plaque Imaging Clinically Used Approach: Combined NIRS-IVUS

Combined NIR-IVUS Imaging

Laser

Computer with algorithms Pull-back and rotation device

Catheter

Single use, 3.2 Fr Dual modality Spectroscopy – lipid core plaque IVUS – plaque structure

Lipid Core Plaque (LCP) Algorithm

- Intracoronary catheter: 3.2F fibre optic catheter
- Spectra processed by algorithm and displayed to user as a chemical image of lipid rich plaque probability ("Chemogram")

Algorithm Calibration

- 4.2 meters of artery from 33 autopsy hearts.
- Lipid Core Plaque (LCP) defined as:

Fibroatheroma > 200 μ m thick

> 60 deg angular extent

Cap < 450 µm thick

Gardner et al: J Am Coll Cardiol Img 2008;1:638–48)

Lipid Core Plaque (LCP) Algorithm

- Intracoronary catheter: 3.2F fibre optic catheter
- Spectra processed by algorithm and displayed to user as a chemical image of lipid rich plaque probability ("Chemogram")

Double Blind Prospective Validation

•5.3 meters of artery from 51 autopsy hearts.

Gardner et al: J Am Coll Cardiol Img 2008;1:638–48)

Lipid Core Plaque (LCP) Algorithm

- Intracoronary catheter: 3.2F fibre optic catheter
- Spectra processed by algorithm and displayed to user as a chemical image of lipid rich plaque probability ("Chemogram")

Double Blind Prospective Validation

- •5.3 meters of artery from 51 autopsy hearts.
- •The algorithm prospectively identified Lipid Core Plaques with an ROC area of 0.80 (95% CI: 0.76-0.85).
- The lipid core burden index (LCBI) detected the presence or absence of any fibroatheroma with an AUC of 0.86 (95% CI:0.81-0.91).

Gardner et al: J Am Coll Cardiol Img 2008;1:638-48)

Nir-Infrared Spectroscopy (NIRS) Reproducibility In-Vivo

Nir-Infrared Spectroscopy (NIRS) Reproducibility In-Vivo

Catheterization and Cardiovascular Interventions 76:359-365 (2010)

Reproducibility of Near-Infrared Spectroscopy for the Detection of Lipid Core Coronary Plaques and Observed Changes After Coronary

Subbast		Mean number of LCPs pullback 1	Mean number of pullback 2	Median number of LCPs pullback 1	Median number of LCPs pullback 2	Spearman's rho for number of LCPs (<i>P</i> -value)	of LCPs (95% confidence intervals)
Subhasi	Donal A	_					
	Definition 1	1.06 ± 1.0	0.94 ± 0.9	1	1	0.827	0.756 (0.572, 0.868)
	Definition 2	1.61 ± 1.3	1.64 ± 1.0	1	1	0.79	0.774 (0.6, 0.878)
	Definition 3	1.94 ± 1.1	1.97 ± 1.0	2	2	0.698	0.72 (0.516, 0.847)
	Definition 4	0.61 ± 0.7	0.61 ± 0.8	0.5	0	0.75	0.814 (0.666, 0.901)
	Definition 5	1.17 ± 0.9	1.08 ± 0.9	1	1	0.871	0.883 (0.783, 0.939)
	Definition 6	1.47 ± 0.9	1.47 ± 0.8	1	1	0.717	0.666 (0.436, 0.815)
	Definition 7	0.25 ± 0.4	0.28 ± 0.5	0	0	0.709	0.689 (0.469, 0.828)
	Definition 8	0.67 ± 0.8	0.72 ± 0.7	1	1	0.761	0.788 (0.623, 0.886)
	Definition 9	1.06 ± 0.9	1.17 ± 0.8	1	1	0.732	0.773 (0.598, 0.877)
	Panel B						
	Definition 1	4.75 ± 5.4	4.58 ± 5.1	4	3	0.892	0.882 (0.781, 0.938)
	Definition 2	10.36 ± 9.3	10.28 ± 8	9	8	0.853	0.771 (0.595, 0.876)
	Definition 3	17.03 ± 11.8	17.25 ± 12.3	15.5	16.5	0.886	0.821 (0.677, 0.905)
	Definition 4	$3.94~\pm~5.36$	$3.61~\pm~5.23$	2	0	0.817	0.913 (0.836, 0.955)
	Definition 5	9.25 ± 8.6	8.89 ± 8.1	8	8	0.82	0.764 (0.585, 0.873)
	Definition 6	16.14 ± 11.5	15.69 ± 12.6	15.5	15	0.717	0.804 (0.649, 0.895)
	Definition 7	2.44 ± 4.5	2.81 ± 5.2	0	0	0.835	0.868 (0.757, 0.931)
	Definition 8	$6.47~\pm~7.4$	7.31 ± 8.2	6	6	0.794	0.793 (0.631, 0.889)
	Definition 9	13.72 ± 12	14.36 ± 13	13	14	0.845	0.811 (0.66, 0.899)

Garcia et al. Cathet & Cardiovasc Interv 2010

1.1.1

Nir-Infrared Spectroscopy (NIRS) Reproducibility In-Vivo

Garcia et al. Cathet & Cardiovasc Interv 2010

Nir-Infrared Spectroscopy (NIRS) Combination with Ultrasound

Combination catheters might offer the benefits of both

Nir-Infrared Spectroscopy (NIRS) **Combination with Ultrasound**

- Catheter: 3.2Fr, 6Fr compatible, 0.014" guidewire
- **NIRS: Same as LipiScan[™]**, cleared by FDA Apr '08
- Ultrasound: 40MHz, 16 fps
- Pullback speed: 0.5mm/sec

Zürich

- Single catheter & pullback, thru blood
 - \rightarrow simultaneous, co-registered NIR & IVUS data

NIRS derived Lipid Core Burden Index (LCBI) predicts major adverse cardiovascular events in pts with coronary artery disease during long-term follow-up

MACE major adverse cardiovascular event NIRS Near Infrared Spectroscopy LCBI Lipid Core Burden Index

Schuurman et al. EHJ 2017

Culprit TCFA have a higher risk for periprocedural MI and worse outcome

RR 12 (3.3-48) Max. LCBI≥500

Goldstein J at el. Circ Cardiovasc Interv 2011.

Lee et al. Circ Cardiovasc Interv 2011.

Nir-Infrared Spectroscopy (NIRS) Combination with Ultrasound: Clinical Observations Culprit TCFA have a higher risk for periprocedural MI and

worse outcome

Journal of the American College of Cardiology
© 2010 by the American College of Cardiology Foundation
Bublished by Elemin Inc.
Fubbaled by Elsevier flic.

Vol. 11, 190. 3, 2 ISSN 0735-1097/\$3 dai/10.1016.0mm 2000.10

IMAGES IN CARDIOLOGY

First-in-Man Clinical Use

of Combined Near-Infrared

Spectroscopy and Intravascular Ultrasound

A Potential Key to Predict Distal Embolization and No-Reflow?

C. Schultz, MD, PHD,* P. W. Serruys, MD, PHD,* M. van der Ent, MD, PHD,* J. Ligthart, MSC,* F. Mastik,* S. Gag, MD, PHD,* J. E. Muller, MD,# M. A. Wilder, MSC,# A. F. W. van de Steen, MSC, PHD,* E. Regar, MD, PHD*

Rotterdam, the Netherlands; and Burlington, Massachusetts

Schultz et al; JACC 2010

Nir-Infrared Spectroscopy (NIRS) Combination with Ultrasound: Clinical Observations

PROSPECTIVE CLINICAL TRIALS

LIPID RICH PLAQUE STUDY
PROSPECT II STUDY

Multi-Modality Intracoronary Plaque Imaging Photoaccoustics

Multi-Modality Intracoronary Plaque Imaging Principle of intravascular photoacoustic imaging

Van der Steen, UMB 2014. 40(6): p. 1037-1048.

Multi-Modality Intracoronary Plaque Imaging Intravascular photoacoustic (IVPA) catheter

UniversitätsSpital Zürich

ett **36**, 597-599 (2011); Wu et al., Appl Opt **53**, 8131-8139 (2014)

IVPA spectra of human atherosclerotic coronaries

IVPA imaging

Next Steps

Further catheter minimuarization IVPA pullback imaging at 20 fps

Human LAD; autopsy sample

Multi-Modality Intracoronary Plaque Imaging Hybrid OCT-IVUS

Multi-Modality Intracoronary Plaque Imaging Hybrid OCT-IVUS

Technical Progress

3F Catheter – IVUS and OCT are aligned co-linearly

- Same tissue at same time
- Inherently precise co-registration
- Facilitates identification and comparison of features in images
- Facilitates dual-modality measurements (EEL–IVUS, Lumen–OCT)
- Will enable novel methods of combining IVUS and OCT that are dependent on precise co-registration for composite images in future

Courtesy B. Courtney, Conavi Medical Inc

Multi-Modality Intracoronary Plaque Imaging Hybrid OCT-IVUS

Technical Progress

3F Catheter – IVUS and OCT are aligned co-I IVUS transducer

- Same tissue at same time
- Inherently precise co-registration
- Facilitates identification and comparison of features in i
- Facilitates dual-modality measurements (EEL–IVUS, Li
- Will enable novel methods of combining IVUS and OC1 on precise co-registration for composite images in futur

Investigational device, under development and not approved in any jurisdiction

Courtesy B. Courtney, Conavi Medical Inc

 \mathbf{OCI}

Multi-Modality Intracoronary Plaque Imaging Hybrid OCT-IVUS: In vitro

Courtesy B. Courtney, Conavi Medical Inc

Multi-Modality Intracoronary Plaque Imaging Hybrid OCT-IVUS: In vitro

Courtesy B. Courtney, Conavi Medical Inc

Overlay of OCT & IVUS

Multifarious coronary necrotic core plaque geometries in patients

Multi-Modality Intracoronary Plaque Imaging Direct Estimation of Peak Stress in Fibrous Cap

Doradla P et al. submitted

UniversitätsSpital Zürich Multi-Modality Intracoronary Plaque Imaging Direct Estimation of Peak Stress in Fibrous Cap

Novel Multifactorial Stress Equation: Culprit rupture site is located adjacent to the location of the maximum PSS.

- A) Peak stress score (PSS) along the pullback
- B) Corresponding overlaid OFDI-IVUS cross section (maximum peak stress location, red arrow)

C) Culprit rupture site with thrombi corresponding to the locations of the asterisks

Doradla P et al. submitted

Multi-Modality Intracoronary Plaque Imaging

There is increasing evidence that tissue composition plays a pivotal role with regards to clinical manifest cardiac events.

Multi-modality intracoronary imaging

- allows to combine the advantages of both, sound-based and light-based, imaging.
- provides the operator in the cathlab with information in *real-time* and in a *co-registered* manner.
- allows for user-independent, automated and quantitative analysis of tissue composition & properties.

Thank You For Your Attention!

